Quelle: www.mdpi.com, Department of Electrical and Electronics Engineering Educators, ASPETE—School of Pedagogical and Technological Education, 14121 N. Heraklion, Greece

Abstract

Many citizens of European countries may soon experience a long and extensive blackout. The lack of predictability in the output of renewable energy sources, aggravating the problem of consistently matching supply with demand on electric grids, along with cyber-attacks or even worse unpredictable incidents in the electric grid are some factors that may mean a blackout is much more likely than in previous years. This paper covers the possibility of an extensive blackout in a country of the interconnected European electricity transmission system or, even worse, a blackout in a wide area of the European continent. The topic of this paper becomes even more important and timely given the energy crisis due to the war in Ukraine, which has made the possibility of a blackout in the winter of 2022–2023 high. First, the major European blackouts that occurred in the past 20 years are presented, examining their causes. On 8 January 2021, the European electricity grid was divided into two separate sections, with different frequencies; some additional scenarios are considered which, if they had happened, could have led to blackouts in some European countries or, even worse, a wide area of Europe. This work also examines how to avoid such an eventuality, as well as how European TSOs should react in case a blackout occurs. Focused on the fast and reliable supply of consumers after a blackout, a novel restoration strategy based on the A* Algorithm is presented. Its efficiency is validated in the IEEE-39 and IEEE-68 bus systems.